Retinoic acid-induced nNOS expression depends on a novel PI3K/Akt/DAX1 pathway in human TGW-nu-I neuroblastoma cells.

نویسندگان

  • Florian Nagl
  • Katrin Schönhofer
  • Barbara Seidler
  • Jörg Mages
  • Hans-Dieter Allescher
  • Roland M Schmid
  • Günter Schneider
  • Dieter Saur
چکیده

Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) acts as a neurotransmitter and intracellular signaling molecule in the central and peripheral nervous system. NO regulates multiple processes like neuronal development, plasticity, and differentiation and is a mediator of neurotoxicity. The nNOS gene is highly complex with 12 alternative first exons, exon 1a-1l, transcribed from distinct promoters, leading to nNOS variants with different 5'-untranslated regions. Transcriptional control of the nNOS gene is not understood in detail. To investigate regulation of nNOS gene expression by retinoic acid (RA), we used the human neuroblastoma cell line TGW-nu-I as a model system. We show that RA induces nNOS transcription in a protein synthesis-dependent fashion. We identify the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the atypical orphan nuclear receptor DAX1 (NR0B1) as critical mediators involved in RA-induced nNOS gene transcription. RA treatment increases DAX1 expression via PI3K/Akt signaling. Upregulation of DAX1 expression in turn induces nNOS transcription in response to RA. These results identify nNOS as a target gene of a novel RA/PI3K/Akt/DAX1-dependent pathway in human neuroblastoma cells and stress the functional importance of the transcriptional regulator DAX1 for nNOS gene expression in response to RA treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells.

Retinoic acid (RA) induces neural differentiation of SH-SY5Y neuroblastoma cells. We show that the mRNA levels of the differentiation-inhibiting basic helix-loop-helix transcription factors ID1, ID2, and ID3 are down-regulated during RA-induced differentiation of SH-SY5Y cells. The levels of ID proteins decreased in parallel to the observed transcriptional repression. The expression of other ba...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Utilization of exogenous tetrahydrobiopterin in nitric oxide synthesis in human neuroblastoma cell line.

We and others have previously reported that neurons expressing neuronal nitric oxide synthase (nNOS) do not co-express GTP cyclohydrolase I, the enzyme that synthesize its cofactor tetrahydrobiopterin (BH4). BH4 is released from catecholaminergic cells and nNOS-expressing cells are located close to BH4-producing catecholaminergic nerve terminals. We show that BH4 is taken up into the nNOS-expre...

متن کامل

Mechanism underlying the effects of doxepin on β-amyloid -induced memory impairment in rats

Objective(s): In previous studies, researchers observed that doxepin could improve cognitive processes and has protective effectson the central nervous system. Thus, this study was designed to analyze the effects of doxepin on β-amyloid (Aβ)-induced memory impairment and neuronal toxicity in ratand to explore the underlying mechanism. Materials and Methods: Rats were treated with Aβ1-42 and dox...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 5  شماره 

صفحات  -

تاریخ انتشار 2009